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ABSTRACT

By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion
paper that the probability of finding a drop of radius r at a linear scale / decreases as /", where 0 = D(r)
= 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that
simulate the observed power laws. In contrast to currently used models that assume homogeneity and a
Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger
drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large
drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain
physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances
their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed
cloud drop size is generally larger than that measured in situ.

1. Introduction

Though it is widely assumed that cloud drops are
distributed uniformly in space and fluctuations of the
number of drops in a given small volume follow Poisson
statistics (e.g., Young 1993), there is strong evidence of
cloud-drop clustering on a wide range of scales down to
centimeter scales (e.g., Hobbs and Rangno 1985; Baker
1992; Pinsky and Khain 2001, 2003; Kostinski and
Jameson 1997; Jameson et al. 1998; Davis et al. 1999;
Shaw et al. 2002). Clustering can be identified as sig-
nificant fluctuations in cloud-drop concentration
(Jameson et al. 1998), defined as the expectation of the
number of drops per volume when volume tends to 0
(Pawlowska and Brenguier 1997). Analyzing Forward
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Scattering Spectrometer Probe (FSSP) data, Baker
(1992) reported a deviation from a Poisson distribution
that is characterized by a perfectly random spatial dis-
tribution. Pinsky and Khain (2001) studied the fine
structure of cloud-drop concentrations using Fast FSSP
(Brenguier et al. 1998) measurements, which showed
that the degree of drop-concentration fluctuations
strongly depends on the drop size. Later Pinsky and
Khain (2003) found that drop clusters on centimeter
scales are induced by droplet inertia within turbulent
flow. Thus, small-scale drop variability carries informa-
tion about the fine structure of clouds. Davis et al.
(1999) assumed scale invariance in cloud liquid water
and used fractal characteristics to describe its spatial
variability on scales from centimeters to hundreds of
meters, while Jameson et al. (1998) and Kostinski and
Jameson (2000) studied fluctuations of the number of
50-um diameter cloud drops per liter using pair-corre-
lation functions. Recently Shaw et al. (2002) argued
that the pair-correlation function is the most natural
and physically meaningful measure of correlations.
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Liu and Hallett (1998) and Liu et al. (2002) looked at
the problem from another angle: they pointed out that
cloud-drop-size distribution is not a scale-independent
function but strongly depends on the spatial scale over
which the drops are sampled. However, Liu et al.
(2002) suggested that observed drop-size distributions
are scale independent above a certain saturation scale.
For scales smaller than the saturation scale, the drop-
size distribution is “ill-defined” and changes substan-
tially from scale to scale. They hypothesized that the
unique property of scale dependence requires a new
theoretical framework that treats the scale as an inde-
pendent variable, just as the variables of space and time
are treated in the current framework. Such a param-
eterization, for example, may result in a better repre-
sentation of clouds in climate models than complicated
models with detailed microphysics because of the large
range of scales involved (Liu et al. 2002).

In the companion paper, Knyazikhin et al. (2005,
hereafter KMLWMM) show that, for sufficiently small
volumes, the mean number of drops with a given radius
varies proportionally to a drop-size-dependent nonunit
power of the volume. The coefficient of proportional-
ity—a generalized drop concentration—and the power
are used to parameterize variability of cloud drops at
small scales. Using this parameterization, they estimate
the direct impact of the small-scale spatial variability of
drops on radiative transfer, concluding that current ra-
diative transfer theory underestimates the effect of
large drops on cloud optical path.

The present paper complements KMLWMM’s re-
sults by demonstrating that the clustering of drops is
primarily responsible for the observed power law. More
specifically, it addresses the following three questions:
(i) Why does the observed power law indicate drop
clustering? (ii) How can the clustering phenomenon be
modeled so as to agree with observations? And, finally,
(iii) How do the observed exponents characterize the
degree of clustering?

Understanding the spatial distribution and small-
scale fluctuations (inhomogeneity) of large drops in
clouds is essential to both the cloud physics and atmo-
spheric radiation communities. For cloud physics, it re-
lates to the coalescence growth of raindrops (Twomey
1976); while for radiation it has a strong indirect influ-
ence on the radiative properties of clouds through a
rapid modification of the cloud-drop-size distribu-
tion, and directly through changing optical path length
(KMLWMM).

2. Small-scale cloud-drop-size variability

The analyses of the FSSP data acquired during the
First International Satellite Cloud Climatology Project
(ISCCP) Regional Experiment (FIRE) in July 1987 in-
dicates that the total number N(r,l) of samples at a
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linear scale / containing drops of radius r follows a
power law with a drop-size-dependent exponent D(r)
(KMLWMM):

N(r, 1) o [P0, (1

The exponent D(r) is a nonincreasing function of the
drop size r and varies between 1 (for small drops) and
0 (for very large drops). If D(r) = 1, drops densely fill
the space they occupy and the number of “nonempty”
samples at a linear scale / is inversely proportional to /
and the total number of drops is proportional to 7. The
case D(r) = 0 corresponds to a few sparsely distributed
individual drops. For 0 < D(r) < 1, the frequency of
drop occurrence decreases with the drop size r; in other
words, the probability of finding a drop of radius r at a
linear scale [ is proportional to P,

To illustrate Eq. (1), Fig. 1 shows variation in N(7,/)
forr =7 =2 um and r = 23 = 2 um derived from data
acquired during a 2-h flight on 3 March 2000 in Kansas
and Oklahoma as part of the Atmospheric Radiation
Measurement (ARM) Cloud Intensive Operational Pe-
riod (IOP; Dong et al. 2002). It is clearly seen that for
a scale range of almost three orders of magnitude (from
80 m to 50 km), the total number of samples with drops
follows a power law with exponents D ~ 1 and D ~ 1/2
for small (r = 7 um) and large (r = 23 pum) drops,
respectively. Figure 2 shows variation in the concentra-
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F1G. 1. Number N(r,[), of FSSP samples containing drops with
radii » = 7 = 2 um (bin 4) and r = 23 *= 2 um (bin 12) vs scale /
derived from data collected by an FSSP on board the University
of North Dakota Citation aircraft during the ARM Cloud 10OP
(Mar 2000). (Available online at a password-protected public site
http://iop.archive.arm.gov/arm-iop/2000/sgp/cloud/poellot-
citation/.) While for small drops, D =~ 1, for large drops at scales
between 80 m and 40 km the variation in N(r,/) clearly follows a
power law with an exponent D = 0.56.
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FIG. 2. Concentration of drops with radius (top) r = 7 = 2 um
(bin 4) and (bottom) r = 23 = 2 um (bin 12) for the 2 h of the
same flight (3 Mar 2001) as in Fig. 1. Note that small droplets (top
panel) almost uniformly fill the space; the set of points on the
horizontal axis with positive concentration has a fractal dimension
close to 1. In contrast, large drops (bottom panel) are clustered; a
fractal dimension of the set with positive concentration is 0.56.

tion of small and large drops in 80-m intervals along the
flight path. One can see that while small drops are more
likely to be unclustered, large drops are positively clus-
tered, (i.e., detecting a drop makes it more likely that
the next drop will be detected nearby). This suggests
that the deviation of the exponent from unity indicates
a clustering in drop spatial distribution.

What is the importance of Eq. (1) deduced from the
analysis of FSSP drop-size distributions? It follows
from this equation that

« in contrast to the underlying assumption of radiative
transfer theory, the mean number of drops is propor-
tional to the drop-size-dependent power of the vol-
ume (Wiscombe et al. 2003);

e such behavior cannot be described by a density
distribution function used in data analysis—a cumu-
lative distribution function should be used instead
(Knyazikhin et al. 2002);

o for sufficiently small volumes, the mean number of
rarer large drops in a given volume decreases more
slowly than conventional approaches assume; conse-
quently their radiative impact is underestimated
(KMLWMM).

In the next section we show how one can simulate the
spatial distribution of drops that follow a power law
[(Eq. (1)] with a given exponent. The case D(r) = 1 for
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small drops is well documented in the literature—the
drop distribution can be simulated by a Poisson distri-
bution with a given density. The spatial distribution of
very large drops with exponent D(r) = 0 is trivial: there
are a few (if any) single drops randomly located. There-
fore, we will focus here on large drops with exponents
0<D(r)<1.

3. Simulation

The most natural way to simulate spatial distribution
of drops with scaling properties satisfying Eq. (1) is to
use a threshold defined by a parameter D in turbulence
cascade models. It is known (e.g., Schertzer and Love-
joy 1989; Chhabra et al. 1989) that the probability of a
d-dimensional cascade field ¢, at scale / to exceed a
singularity of order v is proportional to /"7, that is,

Prob(g, = ["7) o 177, )

Here D and vy are nontrivially related: namely, D =
D(y) is the fractal dimension of the subset of ¢, with
singularity strength <. Indeed, if both parts of Eq. (2)
are multiplied by the total number of boxes, 1/, then
on the left side one gets the number of boxes with
singularity strength between vy and y + Ay, while on the
right side it will be /~”. Assuming for simplicity d = 1,
we get two limiting cases of D = 0 and D = 1, describ-
ing extreme events of single isolated points and a
densely filled support of ¢ (Richtmyer 1978, p. 51),
respectively. In order to simulate a set with dimension
D, therefore, one can generate a one-dimensional cas-
cade (e.g., Meneveau and Sreenivasan 1987) and then
at scale / select a singularity level y that corresponds to
a given dimension D. The spatial distribution of points
that are located on the intersection of the threshold /™
(a line) and the cascade field ¢, will have the dimension
D in the process of [ — 0.

The upper panel in Fig. 3 shows a 12-cascade p model
(Meneveau and Sreenivasan 1987) with p = 0.35. For
this simple model, there is an analytical relationship
between the dimension D of the set and its singularity
level y. As an example, a threshold in the upper panel
cuts a set of 79 clustered points shown in the lower part
of the panel as small squares. Its dimension is estimated
to be 0.3 (lower panel) and corresponds to y = 2/3. The
transition to a slope of —1 for large scales, seen in the
lower panel, is due to a finite size of the interval in
which points are located.

Similar to a one-dimensional cascade model (that lies
on a plane), one can use two- and three-dimensional
cascades that lie in three- and four-dimensional spaces,
respectively. The dimension of the set with singularity
strength vy can still be described by Eq. (2). In the case
of a three-dimensional cascade model, an intersection
of the cascades by a three-dimensional plane results in
a set of points randomly distributed in space. These
points will be clustered in three-dimensional space in a
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Fi1G. 3. (top) A simple log-binomial cascade model called the p
model (Meneveau and Sreenivasan 1987). Twelve cascades with
p = 0.35 are used. An example of a threshold with a singularity
strength y = %3 is shown as the horizontal dashed line. Points on
the horizontal axis at which values of the cascade field exceed the
threshold are depicted as small squares. There are 79 of them and
they are obviously clustered. (bottom) A log-log plot of the num-
ber of nonempty boxes of scale / needed to cover these 79 points
vs the scale /. The small-scale slope gives the dimension D of the
points. For this simple cascade model an analytical relationship
between fractal dimension D and the singularity vy can be found in
Meneveau and Sreenivasan (1987). According to this relationship
y = % corresponds to D ~ (.3.

way similar to the ones clustered on a line in the upper
panel of Fig. 3. The resulting degree of clustering is
defined by the singularity strength y and thus by the
fractal dimension D. Figure 4 illustrates this process.
The upper panel shows the spatial distribution of more
than 20 000 large drops as an intersection of a three-
dimensional plane and a three-dimensional cascade
model. It follows from scaling behavior of nonempty
boxes (lower panel) that the mean number of drops N
in volume V varies with V as V2 (KMLWMM). This
conflicts with a fundamental assumption not only of
most models, but also instrument designs, field obser-
vational strategies, and data processing; namely that the
mean number of drops in volume V is proportional to
V. The fractal dimension D of these drops is 0.56, which
coincides with the one observed during a 2-h flight on 3
March 2000 (see Fig. 2 and its analysis shown in Fig. 1).

Finally, Fig. 5 illustrates spatial distributions of 5115
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drops for two values of the fractal dimension. The gray
drops are distributed uniformly. Their fractal dimen-
sion is 1, this is an implicit assumption behind most of
the current radiative transfer theories in a cloudy at-
mosphere. By contrast, the black drops are clustered
and their spatial variation follows Eq. (1) with D close
to 0.55. As a result, the frequency of occurrence of
black drops along a typical line is lower than the fre-
quency of occurrence of gray drops. However, the
mean number of black drops in nonempty boxes (clus-
ters) is larger than that of gray drops.

Consider a tube with a cross section thick enough to
capture the three-dimensional structure of drop spatial
distribution. Since the distributions of the black (and
gray) drops are isotropic by construction (i.e., there is
no preferential direction), any multiple-bend tube that
is long enough will show a spatial distribution statisti-
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FIG. 4. A simulated “cloud” piece with more than 2 X 10*
(actually 21 058) large drops. A three-dimensional 8-cascade
model with the total number of pixels 224 ~ 2 X 10® was used.
(top) A four-dimensional cutoff at a singularity level that gives
fractal dimension D = (0.56 has been used to simulate the spatial
distribution of drops. (bottom) A straight line on a log-log plot of
the number of nonempty boxes vs scale, i.e., N(I) = V™2 = [P,
Note that the observed variation in N(/) along the flight path for
drops with radii » = 23 * 2 um exhibits similar behavior (Fig. 1).
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F1G. 5. An example of the space-filling properties of distributions with different fractal dimensions.
Here are an equal amount of drops (total number of 5115) that are colored gray and black. The gray
drops are distributed perfectly randomly throughout the space (having a fractal dimension close to 1)
whereas the black particles are distributed in a such way that their fractal dimension is significantly less
than 1 (between 0.5 and 0.55). The spatial distribution of black drops was simulated as an intersection
of a three-dimensional plane and a three-dimensional 8-cascade model imbedded in a four-dimensional

space.

cally similar to that observed during the cloud IOP (Fig.
2). By statistical similarity here we understand that the
number of large drop samples follows a power law (1)
with exponents D close to %2. Unfortunately, a simu-
lated three-dimensional spatial distribution of drops (8
cascades requires about 20 million points) does not pro-
vide us with an adequate scaling range to observe a
power-law behavior similar to the one in Fig. 1. Instead,
we ran a one-dimensional 23-cascades model with the
same fractal dimension D = 0.56. Figure 6 illustrates
the results. In addition, a case of a perfectly random
distribution of the same number of drops is also shown.

Thresholding multiplicative cascades is not the only
way to simulate cloud drops whose spatial distribution
follows Eq. (1). Another natural technique is to use an
additive Levy flight (e.g., Mandelbrot 1982, 132-143): a
sequence of jumps that are statistically independent
segments whose length follows the probability distribu-
tion

Prob(X > x) «cx™ %0 < a < 2); (3)

that is, the number of jumps exceeding x is a hyperbolic
distribution with parameter a. Note that for Levy
flights all moments of order k > « diverge. The limiting

case of a = 2 corresponds to a Gaussian distribution,
thus its random walk corresponds to Brownian motion
where all jumps are normally distributed. The case o =
1 is the Cauchy distribution: the behavior is dominated
by one or two large “jumps.” Decreasing o makes the
long segments longer and the short segments shorter,
thus increasing clustering. An example of this distribu-
tion for simulating rain drops can be found in Lovejoy
and Mandelbrot (1985). For the relationship between a
hyperbolic parameter « from (3) and a fractal dimen-
sion D defined in (1) see Mandelbrot (1982).

In general, the exponent D determines the type of
the distribution. Probability theory distinguishes three
classes, or types, of distributions: absolutely continuous
(D = 1), singular (0 < D < 1), and discrete (D = 0)
distributions (e.g., Richtmyer 1978, p. 260). Each of
these classes contains an infinite number of distribu-
tions. A multiplicative turbulence cascade model and
the additive Levy distribution used here are just two
examples from the set of singular distributions. Their
common feature is the exponent D; the closer D is to 0
the closer the values of the distribution function are to
the discrete (clustered) set. This is a direct consequence
of the Lebesque (e.g., Richtmyer 1978, p. 260) theorem
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FIG. 6. Scaling behavior of nonempty boxes, N, vs scale / for a
one-dimensional cascade model with 23 cascades. A power-law
behavior with a scaling exponent 0.56 is well established over at
least three orders of magnitude. For comparison, the N vs / curve
for a perfectly random distribution of the same number of drops
(142 680) is also shown. Note that at small scales (/ — 0), N(I) is
equal to the total number of drops (in this case: 142 680).

on decomposition of the distribution and the Hausdorf-
Besicovitch dimension (e.g., Barnsley 1988, p. 202).

4. Discussion

The assumption that cloud drops are distributed uni-
formly in space and fluctuations of their number in a
given volume follow Poisson statistics is built not only
into most models but also into instrument design, field
observational strategies, and data processing. The
analysis of aircraft measurements of individual drop
sizes showed that for sufficiently small volumes the
mean number of drops is proportional to a drop-size-
dependent nonunit power of the volume. This empirical
fact leads to strong drop clustering—the lower the
power is, the stronger the clustering. There are also
other observational evidences of cloud-drop clustering
(e.g., Shaw et al. 2002). Ignoring the clustering phenom-
enon can lead to underestimating the impact of large
drops on cloud optical properties (KMLWMM).

Equation (1) provides a quantitative means for a
size-dependent description of clustering and spatial dis-
tribution of drops. It states that the intensity of cluster-
ing is measured by the power-law exponent 0 < D < 1.
The smaller D is, the larger the degree of clustering.
When D = 1, cloud drops are not clustered and the
number of drops in a volume is proportional to the
volume. Equation (1) also allows us to develop a scale-
invariant model of the spatial distribution of large
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drops that has the same drop-size-dependent exponents
as the ones observed. Below we discuss briefly the pos-
sible use of Eq. (1) and cloud-drop models in cloud
physics and radiation.

The spatial distribution of cloud drops, especially
large drops, is not yet fully understood and remains
controversial (see Pinsky and Khain 2001, and refer-
ences therein). Small-scale spatial correlation and clus-
tering are important in cloud-drop growth rate and can
help explain some of the fundamental problems in
cloud physics. For example, Twomey (1976) suggested
clustering (“pockets of high liquid water”) for explain-
ing observed warm rain. Once a correct theory which
predicts the observed power-law statistics is in hand,
the strong clustering of larger drops falls out naturally
from the statistics; no deus ex machina need be invoked
to explain the clustering. Recently, McGraw and Liu
(2003) developed a new model for cloud drizzle forma-
tion that quantitatively explains how cloud turbulence
enhances the growth of cloud droplets by both conden-
sation and collection. In particular, they showed that
once drops reach a critical radius of about 20 uwm they
can grow much faster through collection, transforming
cloud drops to drizzle size. Classical condensation
theory was unable to explain the production of these
drops because of their slow growth rate.

It is most likely that atmospheric turbulence signifi-
cantly enhances drop clustering (Kostinski and Shaw
2001; Shaw 2003), especially for large drops (Pinsky and
Khain 1997). The scale exponents D(r) depend on the
small-scale variability of clouds determined by thermo-
dynamic and fluid-mechanical interactions between
droplets and the surrounding air. However, the expo-
nents have nothing to do with cloud macroscale struc-
ture. In other words, two clouds could “look” alike dy-
namically but have different small-scale turbulence and
different degrees of clustering, or they might look dif-
ferent dynamically but have similar small-scale turbu-
lence and thus the same degree of clustering.

To see the consequences of scaling behavior (1) on
cloud radiative properties, let us assume for simplicity
that a cloud consists of only two types of drops: small
drops (subscript S) with Dg = 1 and large drops (sub-
script L) with 0 < D; < 1. The mean number, n(r,V),
of drops with radius r in a volume V is

n(r,V) = ng(V)a(r — rs) + ny(V)o(r —r),  (4)
where
ns(V) = PSVDS =psV (Sa)

and

n (V) = PLVDL

are the mean number of small and large drops in vol-
ume V, respectively. Here pg and p; are volume-
independent generalized drop concentrations [in num-
ber per cluster (cm®)?; see Wiscombe et al. 2003;

(5b)
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KMLWMM], and 8 is the Dirac & function. Substituting
Egs. (4)—(5) into the definition of droplet effective ra-
dius r, (e.g., Hansen and Travis 1974) we get

psVrs + p V2l
psVI§ + p VPl

It follows from Eq. (6) that for small scales, r,(V) — r.
as V — 0, while for large scales (V) - rgas V — oo, If
one assumes D; = 1, as does the conventional tech-
nique, we get r (V) = r, which is typically much closer
to rg than to ry_since the concentration of large drops is
negligible compared to small ones (p; << pg). In other
words, the conventional technique systematically un-
derestimates the effect of large drops at small scales.
The effective radius of drops in a cloud estimated under
the assumption of uniformly distributed drops (e.g.,
gray dots in Fig. 5) is almost always smaller than the
one for a cloud with clustered drops (e.g., black dots in
Fig. 5). This suggests a partial explanation for the fact
that r, retrieved from satellites is usually larger than the
one measured in situ [e.g., Dong et al. (2002) for the
March 2000 ARM Cloud IOP; also Figs. 1 and 2].

r(V) = (6)

5. Conclusions

This paper shows a new empirical way of specifying
the spatial clustering of droplets in a cloud, based on a
new kind of analysis of FSSP data grounded in (multi)-
fractal theory. We have discovered that this clustering
is a function of drop size r, and that it can be encapsu-
lated into a single function D(r) whose physical mean-
ing is that of a dimension. This function generalizes and
makes more quantitative several decades of work on
clustering going back at least to Twomey (1976), if not
further. Using only D(r), it is possible to create realiza-
tions of the location of every drop in a cloud as a func-
tion of its size, and all such realizations naturally exhibit
clustering of drops bigger than about 14 um without
introducing such clustering as an arbitrarily imposed
constraint.

Our empirical theory can be regarded as being inter-
mediate between the simpler empirical clustering theo-
ries of yore, which have advanced little in 30 years and
were more descriptive than quantitative, and a full so-
lution of the turbulence problem for a nearly colloidal
suspension, which presumably could derive clustering
from first principles. While it would be nice to have the
latter full solution, decades of work on it have not led to
much progress, so in the meantime we suggest that
much more rapid progress can be made using our in-
termediate theory, which is solidly grounded in obser-
vation, relatively simple, and sufficient to model the
locations of droplets within any cloud.

There are many applications for this new formula-
tion, not the least of which is the warm rain problem,
which has frustrated cloud physicists for 40 years.
Twomey recognized that the warm rain problem would
be insoluble without clustering, but did not have the
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highly time-resolved observations needed to make
much progress on clustering, nor the (multi)fractal
analysis tools that were developed a decade later and
only first applied to high-time-resolution FSSP data
by us.
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